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Abstract

This study explores short and long-term drivers of alternative decarbonisation path-

ways in four major economies (China, India, Europe and USA), using a multi-model

decomposition analysis. The paper focuses on determining the energy system transfor-

mations that drive the changes in carbon emissions and identifying the model charac-

teristics that lead to differences in the decarbonisation strategies. First, we compare the

decomposition over time of near-past carbon emissions and near-future model pro-

jections as a methodology to validate baseline scenarios. We show that a no-policy

baseline scenario is in line with historical trends for all regions except China, where all

models project higher improvements in energy and carbon intensity than the near-past

historical development. Second, we compare regional decarbonisation drivers across

models in a scenario with moderate policy targets that represents the current frag-

mented international climate policy landscape. The results from the different models

show that energy efficiency improvements represent the main strategy in achieving the

moderate climate targets. Finally, we develop an LMDI decomposition analysis to de-

termine the additional energy system changes needed to achieve a global GHG concen-

tration target of 450ppm compared to the moderate policy case. In all models, reducing

regional carbon intensity of energy is the major decarbonisation strategy after 2030. In

the long-term (after 2050), most of the models find that negative carbon emissions are

critical in such scenario, emphasizing the key role of biomass with CCS. However, the

level of contribution of the decarbonisation factor varies significantly across models,

due to the large uncertainty in the availability of renewables and the development of

CCS technologies. Overall, we find that the main differences in the decomposition re-

sults across models are due to assumptions concerning availability of natural resources

and variety of backstop technologies.
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1. Introduction

Climate change mitigation is one of the major global policy challenges, as it is in-

creasingly recognized that unabated climate change can lead to large environmental,

social and economic impacts on human societies. Limiting greenhouse gas (GHG)

emissions has been the subject of international negotiations for more than two decades.

Due to the persistent lack of a comprehensive global agreement on GHG emissions re-

duction, several studies based on individual or multi-model results have analysed the

effect of delayed and unilateral climate change mitigation policy action. For instance,

the 22nd Energy Modeling Forum (EMF-22) analysed the consequences of delayed ac-

tion (Bosetti et al., 2009; Krey & Riahi, 2009; van Vliet et al., 2009); unilateral climate

change mitigation policies have been studied concerning policy effectiveness, carbon

leakage and border carbon adjustment (Böhringer et al., 2012; Bosetti & De Cian, 2013;

Böhringer et al., 2014). Moreover, the role of the European Union, which has taken

the lead in climate change mitigation policy, has been investigated (For instance in

the EMF-28, see De Cian et al. (2013) and Knopf et al. (2013)). Recently, the AMPERE

modelling comparison project1 analysed three different aspects of climate change mit-

igation: (1) The consequences of following the Copenhagen Accord and the Cancun

Agreement until 2030 for the achievement of long-term global stringent mitigation ob-

jectives (Eom et al., 2015; Riahi et al., 2015); (2) the implications of moderate regional

climate policies and the consequences of unilateral first-mover action in the EU and

China (Kriegler et al., 2015b; Bauer et al., 2015; Marcucci & Turton, 2015; Schwanitz

et al., 2015; Paroussos et al., 2015); and (3) European decarbonisation pathways un-

der alternative technological choices to achieve the climate targets of the EU Roadmap

2050 (Capros et al., 2014).We develop in this paper a multi-model decomposition anal-

ysis of a subset of the global AMPERE scenarios. This decomposition analysis helps

identifying the contribution of different drivers, such as energy efficiency of GDP and

carbon intensity of energy, to changes in CO2 emissions from the combustion of fossil

fuels and industrial applications.

The objective of decomposition analysis is to quantify the relative contribution of

different pre-defined factors to the change of one explained variable. The decomposi-

tion methods used in the 1970’s and 1980’s were based on the Laspeyres index, which

measures percentage change of a factor while holding the other decomposition fac-

tors constant (Ang, 2004). At the end of the 1980s, Boyd et al. (1988, 1987) proposed

1The AMPERE project is a collaborative effort among 22 institutions in Europe, Asia and North Amer-

ica, funded by the European Commission, FP7 (http://ampere-project.eu/web/). AMPERE aims for a

broad exploration of mitigation pathways and associated mitigation costs under real-world limitations

while offering insights into the differences across models and the relation to historical trends.
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the use of the Divisia index to decompose energy intensity as an alternative to the

Laspeyres index. The Divisia index is a “weighted sum of logarithmic growth rates,

where the weights are components’ shares in total value” (Ang, 2004). One frequently

used method is the Log-mean Divisia index (LMDI), introduced by Ang & Liu (2001).

The LMDI can be used to decompose energy demand or emissions between two end

points into separate sectoral contributions (Ang, 2005). The LMDI method has been

further developed to analyse energy intensity (Choi & Ang, 2012) and both energy and

emissions (Su & Ang, 2012).

After being introduced in 1970, decomposition analysis has become a well-known

analytical tool for supporting policy making in energy and environmental issues, as

shown in Ang & Zhang (2000) where more than 100 decomposition studies are pre-

sented. In 1990, Kaya (1990) introduced a method to decompose emissions into key

drivers, like population, GDP per capita, energy intensity of GDP and carbon intensity

of energy. Kawase et al. (2006) expanded the Kaya identity in order to incorporate more

drivers for carbon emissions and applied the extended method to a set of national emis-

sion scenarios for Japan, Germany, the U.K. and France. Many studies have evaluated

the role of key drivers for historical changes in emissions or energy intensity, for exam-

ple Baldwin & Sue Wing (2013) decompose the evolution CO2 emissions in the period

1963-2008 in the US in five driving factors: the emission intensity of energy use, the en-

ergy intensity of economic activity, the composition of states’ output, per capita income

and population; Alves & Moutinho (2013) use the complete decomposition technique

originally developed by Sun (1998) to examine the evolution of CO2 emissions intensity

in 16 industrial sectors in Portugal in the period 1996 to 2009; Voigt et al. (2014) analysed

energy intensity trends between 1995 and 2007 in 40 major economies using the LMDI

method to attribute efficiency changes to either changes in technology or changes in

the structure of the economy.

Decomposition analysis has also been used to analyse future model-based energy

scenarios, including analyses from the IEA (IEA, 2004; Ang & Liu, 2007a; IEA, 2012) and

the assessments prepared for use by the IPCC2 (Nakicenovic et al., 1998; Hanaoka et al.,

2006, 2009). Moreover, Riahi et al. (2007) project the evolution of global energy intensity

of GDP and carbon intensity of energy until 2100; Agnolucci et al. (2009) decompose

future energy scenarios for the UK; Kesicki & Anandarajah (2011) decompose global

and regional future energy-emissions scenarios using the Times Integrated assessment

model; and Fisher-Vanden et al. (2012) apply a new decomposition technique to the

results of a multi-region, multi-sector CGE model. While all these studies are based on

a single model, more recently, the decomposition analyses have been focused on the

comparison of the results from different models to determine robust patterns across

them. For instance, Bellevrat (2012) analyses the Chinese future energy and carbon

2Intergovernmental Panel on Climate Change
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emissions scenarios using results from different models; Blanford et al. (2012) devel-

oped a decomposition analysis of baseline scenarios for Asia comparing different mod-

els; Förster et al. (2013), as part of the EMF-28, and Capros et al. (2014), as part of AM-

PERE, developed multi-model decomposition analyses of alternative European climate

policy scenarios by 2050; and van Sluisveld et al. (2013) present a multi-model decom-

position analysis of the emissions in five major economies using the Kaya identity in

the period 2020-2050.

Following the approach used in Bellevrat (2012) and Förster et al. (2013), in this pa-

per we develop the first multi-model decomposition analysis of short- and long-term

regional carbon emissions, which allows the analysis of differences and synergies in re-

gional decarbonisation strategies. We analyse four major economies, including both

developed (USA, EU-27) and developing regions (China, India), all of which are pro-

jected to play a critical role in global climate policies in the long term. The analysis com-

pares the results of a subset scenarios from ten well-established global energy-economy

integrated assessment models (IAMs) that participated in the AMPERE project. The

analysis focuses on the regional energy system transformations required to mitigate

energy-related CO2 emissions3 including reductions in energy intensity of GDP and car-

bon intensity of final energy. This paper contributes to the literature by means of: (1)

the decomposition of near-past historical carbon emissions and near-term modelling

projections as an alternative to validate baseline scenarios; (2) the identification of re-

gional decarbonisation strategies to achieve moderate and stringent climate change

mitigation objectives; and (3) determining the main assumptions and model charac-

teristics that drive significant deviation from the average results in the carbon decom-

position analyses.

First, integrated assessment modelling of climate change aims to analyse the behav-

ior of the future energy-economy-climate system by evaluating alternative scenarios of

the system’s future development. IAMs commonly use a (no climate policy) baseline

scenario that provides the benchmark for the evaluation of the impacts of alternative

climate policies on the evolution of the energy system and economic development. We

propose the comparison of the decomposition of the historical carbon emissions of the

period 1990-2010 with the near-term model results to validate the assumptions of the

baseline scenario.

Second, we study a scenario with moderate climate change mitigation policies, where

the impacts of regional pledges from the Copenhagen COP are analysed. This moder-

ate climate policy scenario aims to conceptualize the current regionally fragmented

climate policies providing important insights to the climate policy discussion concern-

3The IAMs use in this paper have different sectoral resolution, from a very aggregate economy in the

optimal growth models (1-3 sectors) to a detailed sectoral disaggregation (up to 23 sectors) in the com-

putable general equilibrium models. Therefore, we focus on the analysis of energy-related CO2 emissions

at the aggregate level of economy.

4



ing the required regional changes in energy efficiency and carbon intensity of energy

to achieve the Copenhagen-Cancun pledges. Moreover, we analyse a strong mitiga-

tion scenario that results in negative carbon emissions by the end of the century. We

present an LMDI decomposition analysis of the changes in emissions in this case com-

pared to the moderate policy scenario to identify the additional efforts needed to real-

ize a stringent mitigation target by 2100 and especially the important role of negative

carbon emissions in the second half of the century.

Furthermore, the third contribution of the paper is the identification of the assump-

tions and model characteristics that lead to different decomposition results in both the

moderate and the stringent climate policy scenarios.

The rest of the paper is organized as follows: in the next section we describe the

integrated assessments models used in the multi-model decomposition analysis, the

analysed scenarios and the decomposition methodologies used in the paper; in Sec-

tion 3 we present the index decomposition analyses of both the no-policy baseline and

the moderate reference policy scenario; Section 4 discusses the regional LMDI decom-

position analysis in the case with a global ambitious climate change mitigation target;

and finally we discuss the main conclusions and policy implications of the analysis.

2. Methodology

In this paper, we develop a multi-model decomposition analysis of CO2 emissions

to determine the main regional energy system transformation that drive alternative

mitigation pathways in diverse energy-economy integrated assessment model.

2.1. Global integrated assessment models

The multi-model decomposition analyses include ten integrated assessment energy-

economy models (IAMs) that participated in the AMPERE model inter-comparison project

(Table 1 summarizes the main characteristics of the models used in this paper and for

a more detailed description see Kriegler et al. (2015b)). The compared models can be

broadly grouped according to the modelling approach into three distinct categories: (1)

Computable general equilibrium (CGE); (2) Ramsey-type optimal growth models (OG);

and (3) partial equilibrium energy system (PE) models. CGE models determine the mar-

ket equilibrium in every period with exogenous assumptions on population, improve-

ments in labour and total factor productivity or production technologies. OG models

maximize intertemporal welfare subject to equilibrium constraints and, in most cases,

assume perfect foresight about future production and consumption. Both CGE and OG

models represent the whole economy with different sectoral resolution (larger in the

CGE models) and are able to quantify the macroeconomic implications of alternative

energy and climate policies. PE models represent the market and technology develop-

ment in the energy sector with a wide portfolio of energy technologies and options for

emissions reduction. PE models typically minimize production costs (or maximize con-

sumer and producer surplus) in the energy sector but do not model endogenously the
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evolution of economic activity. The diversity of energy technologies (in the supply and

demand side) varies among models as well as the assumptions concerning future devel-

opment and availability of low carbon options. To characterise the variety of low carbon

energy supply technologies in the models we use the 3-sector Shannon- Wiener index

(normalized in the interval [0,1]) estimated by Kriegler et al. (2015a). 1 indicates a large

variety of electricity and non-electric energy technologies that reduce CO2 emissions.

CGE models have the lowest low-carbon technology variety while most of the PE and

OG models have a large diversity of energy technologies. Besides this indicator, Table 1

presents whether the models include or not biomass technologies with carbon capture

and storage (CCS). The last indicator included in Table 1 reflects how responsive the

models are to climate policies. It is calculated in Kriegler et al. (2015a) and it encom-

passes different aspects of the models, including: variety of low carbon technologies,

technology costs and technology learning, regional renewable potentials and fossil fuel

endowments, assumptions on early retirement of technologies, limits on growth rates

and on shares of certain type of intermittent energy sources, among others. The dif-

ferences in model structure, theoretical foundations, sectoral coverage, representation

of GHGs, technological details in the energy sector and assumptions reflect different

choices of modellers on how to best approach the analysis of mitigation pathways. The

model flexibility for technological substitutions, the potential for radical energy system

restructuring and the variety of low carbon options included in the modelling frame-

work have a large impact on model results and therefore in the decomposition analysis.

For instance, van Sluisveld et al. (2013) and Förster et al. (2013) found that general equi-

librium models have different behaviour relative to technologically-rich energy system

models, with the latter opting for reducing carbon intensity of energy rather than en-

ergy demand in case of strong climate policies.

Table 1: Characterisation of integrated assessment energy-economy models included in the analysis. PE:

Partial equilibrium, CGE: Computable general equilibrium and OG: Ramsey-type optimal growth model

Name Modelling

approach

Time

horizon

Variety of

low-carbon

supply tech.

Biomass CCS
Response to

climate policies
Elect.

Non-

elect.

DNE21+ PE 2050 0.79 Yes Yes Low

GCAM PE 2100 0.93 Yes Yes High

GEM-E3 CGE 2050 0.36 No No Low

IMACLIM CGE 2100 0.65 Yes No Low

IMAGE PE 2100 0.92 Yes Yes High

MERGE-ETL OG 2100 0.89 Yes Yes High

MESSAGE OG 2100 0.92 Yes Yes High

POLES PE 2100 0.92 Yes Yes Medium

REMIND OG 2100 0.89 Yes Yes High

WITCH OG 2100 0.57 Yes No Low
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All the models have global coverage with different disaggregation of world regions.

We analyse climate change mitigation policies in four major economies: the EU, USA,

China and India, which jointly accounted for 60% of global carbon emissions in 2010.

All models adopted harmonised assumptions on population and potential economic

growth4. The harmonisation was developed at the country or geopolitical level5 and

mapped by each model to the corresponding native regions (details on the harmonisa-

tion are provided in Supplementary Online Material of the study (Kriegler et al., 2015b)).

The definition of the regions is not harmonised across models, which results in differ-

ences in the regional population and potential GDP. For instance, some models define a

broader EU region that includes, besides the current EU-28 member states, Turkey and

the EFTA countries. Therefore, to improve comparability in the multi-model decompo-

sition analysis, we exclude the results of those models in which the regional population

in 2010 has a deviation greater than 10% compared to the UN Population data (United

Nations, 2013). Thus, the MESSAGE model has been excluded from the analysis for EU,

USA and India, while GCAM and IMACLIM are not taken into account for the EU region.

2.2. Description of analysed scenarios

The target of the decomposition analysis is to explore the changes in Kaya identity

factors under alternative and highly contrasting climate policy regimes. The analysis

is based on a set of scenarios that assume different stringency levels of global climate

change mitigation policies presented in Table 2 (see Kriegler et al. (2015b) and Mar-

cucci & Turton (2015) for a more detailed description of the analysed scenarios). The

Base scenario models a counterfactual case in which no climate change mitigation poli-

cies are pursued. The RefPol case aims to conceptualize the current policy landscape

including fragmented climate change and technology policies with regional moderate

targets. The 2020 mitigation targets are based on the low-end of the (unconditional)

Copenhagen-Cancun pledges. After 2020, it is assumed that countries will maintain

their mitigation effort with climate policies that lead to improvements in emissions in-

tensity per unit of GDP comparable to the period 2005-2020. Finally, we consider a sce-

nario with an ambitious global target of stabilising the atmospheric concentration of

GHGs at 450ppm by the end of the 21st century. The target in this scenario is modelled

as a global cap on cumulative CO2 emissions between 2000 and 2100. Models have full

“when” and “where” flexibility, that is, they decide on the optimal timing and distribu-

4As an input to the models we use a potential GDP pathway that represents economic output in a

hypothetical case with constant prices. General equilibrium and optimal growth models determine en-

dogenously the realized GDP, accounting for changes in the prices due to different scenario assumptions.

For instance, climate policies will lead to an increase in energy prices which will reduce the realized eco-

nomic output compared to the no climate policy Baseline scenario.
5USA, Japan, EU15, EU12, Russia, Middle East, China, India, Sub-Saharan Africa, Latin America,

Southeast Asia, Sub Saharan Africa, Korea, Eastern Europe, Turkey, Australia and New Zealand, Taiwan,

Pakistan, EFTA (Norway, Switzerland and Iceland), North Africa, Indonesia, Mexico and Brazil.
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tion among regions and sectors of the GHG mitigation effort, which leads to an efficient

distribution of the carbon abatement effort through the equalisation of marginal abate-

ment costs across regions and sectors.

Table 2: Analyzed scenarios

Name Description
Targets

GHG mitigation Technology

Base Counterfactual scenario

without climate change

mitigation policies

None None

RefPol Moderate climate change

mitigation policy scenario

that represents the current

policy landscape including

regional policies on emis-

sions reduction and tech-

nology deployment

2020: Low-end of uncondi-

tional Copenhagen-Cancun

pledges: EU and USA: 15%

and 5% reduction in GHG

emissions from 2005 levels,

respectively. China and In-

dia: 40% and 20% reduction

in GHG intensity relative to

2005, respectively

Regional targets on deploy-

ment of renewable and nu-

clear technologies by 2020.

They are represented as in-

stalled capacity targets or a

minimum share in the elec-

tricity productiona

After 2020: Emission in-

tensity targets following the

stringency of the Copen-

hagen pledges

450 Immediate global climate

change mitigation policy

Global target aiming to sta-

bilize the concentration of

GHGs at 450ppm by 2100.

This target is implemented

by imposing a cumulative

CO2 emissions budget in the

2010-2100 period

RefPol targets

aSee Kriegler et al. (2015b) and Marcucci & Turton (2015) for a detailed description of the targets.

Figure 1a presents the models results (mean and ranges are shown) for global CO2

emissions in the three analysed scenarios. Even though the climate change mitigation

policies assumed in the RefPol scenario are moderate, global CO2 emissions from fossil

fuels are significantly reduced compared to the Base scenario, from an average of 100

GtCO2 in 2100 to 44.8 GtCO2, although the short-term effects (until 2030) are rather

limited. The global climate stabilization target in the 450 scenario results in a further

6This is valid in all the box plots in this paper.
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(c) 2050-2100

Figure 1: CO2 emissions from fossil fuels and industry (excluding LULUCF) in Base, RefPol and 450 sce-

narios: (a) Global emissions and regional cumulative CO2 emissions in (b) 2010-2050 and (c) 2050-2100.

In (a) the dark line represents the mean across the models; and in (b) and (c) the central mark is the

median, the edges of the box are the 25th (q1) to the 75th (q3) percentiles, the error bars extend to the

minimum and maximum data points not considered outliers, and the outliers (+) are defined as those

points that are outside the range
[

q1 −1.5
(

q3 −q1

)

, q3 +1.5
(

q3 −q1

)]
6. Note the different y-axes.

reduction of energy-related CO2 emissions to an average of -12.3 GtCO2 by 2100. All the

models present a similar behavior with a significant reduction of carbon emissions in

the first half of the century and slightly negative emissions after 2060, except for GCAM,

whose optimal pathway implies a relatively low effort until 2050 and a high develop-

ment of biomass technologies with CCS in the second half of the century, leading to

large negative emissions in 2100 (-59 GtCO2). CO2 is the major contributor to total

GHG emissions, accounting for around 85% of GHGs in the Base scenario in 2100.

Figures 1b and 1c compare the regional cumulative CO2 emissions in the periods

2010-2050 and 2050-2100, respectively. The assumptions in the RefPol scenario are par-

ticularly stringent in the EU with an average reduction of cumulative emissions of 27%

until 2050 (and 83% in 2050-2100) compared to the Base scenario, while in the other re-

gions the reduction in this same period is around 10% (and around 50% in 2050-2100).
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In the 450 scenario, all regions reduce their cumulative CO2 emissions to around zero

(median of models) in the second half of the century. This stringent scenario results in

important regional differences with, China and India undertaking the largest emissions

reduction efforts in the period 2010-2050 (an average reduction of 50% compared to the

RefPol case) and a relatively low additional carbon abatement in the EU (compared to

the RefPol scenario).

The climate outcome of the different scenarios depends on the global cumulative

GHG emissions in the 2010-2100 period. Models results show an increase in global

mean temperature by 2100 relative to pre-industrial levels of 4.1-5.3◦C in the Base case;

3.2-3.8◦C in the moderate reference policy; and 1.7-2.2◦C in the 450 scenario (Kriegler

et al., 2015b).

2.3. The Kaya identity

A useful tool to analyze the model differences in terms of the determinants of the

reductions in CO2 emissions7 reductions is the Kaya identity (Kaya, 1990) that decom-

poses carbon emissions into the main underlying factors:

CO2 = GDP×

FE

GDP
︸ ︷︷ ︸

EI

×

CO2

FE
︸ ︷︷ ︸

CI

(1)

where CO2 represents the total carbon emissions, GDP is the gross domestic prod-

uct, FE is the final energy consumption, EI represents the final energy intensity of GDP

and CI is the carbon intensity of final energy. The three components of the above de-

composition formula are interpreted as follows:

1. Economic activity: A reduction of the economic activity (measured as a reduction

in GDP) leads directly to a decrease in the energy demanded by final consumers

that in turn leads to lower carbon emissions both in final energy demand sectors

and in the power generating sector.

2. Energy intensity of GDP (EI): A reduction in energy intensity (the ratio of final en-

ergy demand to GDP) can be attributed to energy efficiency improvements (bet-

ter insulation in buildings, more efficient technologies such as household appli-

ances or hybrid/electric vehicles, etc.) promoted via policies or standards, struc-

tural changes of the economy away from energy intensive industrial sectors (e.g.

ferrous and non-ferrous metals, chemicals, cement etc.), consumers’ reaction to

high energy prices or behavioral changes of energy consumers8.

7CO2 emissions from fossil fuel combustion and industry are considered. Emissions from the LULUCF

sector (Land Use, Land Use Change and Forestry) are excluded from our analysis.
8Energy efficiency improvements can be caused by structural changes in economic production, e.g.

de-industrialization process as GDP increases. However, most global IAMs used in the study do not

represent multiple sectors and thus the structural economy effect cannot be studied in the AMPERE

framework.
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3. Carbon intensity of energy (CI): A reduction in the carbon intensity of energy

(rate of CO2 emissions to final energy) corresponds to changes in the energy mix,

including substitution within the fossil fuel mix (natural gas replaces coal and

oil), the use of renewable-based alternatives, deployment of nuclear power plants

or technologies with carbon capture and storage (CCS) in the power generation

sector and in industrial applications.

Partial equilibrium energy-system models have exogenous assumptions on GDP.

Moreover, according to Kriegler et al. (2015a), in the CGE and OG models the varia-

tion across scenarios in the effect of changes in GDP to changes in CO2 emissions is

significantly lower than the effect from changes in energy intensity of GDP and car-

bon intensity of energy. Therefore, in this analysis we focus on regional energy system

transformations (energy intensity of GDP and carbon intensity of energy) driven by al-

ternative climate policies. Another factor that is often included in the decomposition of

emissions is the population growth, since an increase in the population leads directly

to higher energy demand and hence higher emissions. In this analysis we have not in-

cluded the influence of population in the changes of CO2 emissions since it is an exoge-

nous harmonised parameter to all the models and it is kept constant across scenarios,

and therefore, does not provide additional insights to the decomposition analysis.

2.4. Decomposition methodology

We use two distinct approaches for the decomposition analysis: the index analysis

and the additive log mean Divisia index (LMDI I). We use the first technique to develop

an intertemporal analysis of the changes in carbon emissions compared to a reference

year because it allows a straightforward interpretation of the decomposition results. We

use the LMDI approach to analyse the changes in emissions in the scenario with the

stringent climate target. This methodology has some advantages compared to other

decomposition approaches, for instance, it gives a perfect decomposition (no unex-

plained residuals), it can handle zero values in the data set and it is relatively easy to

formulate (does not depend on the number of factors used) (Ang, 2004).

2.4.1. Index decomposition methodology

In the index analysis the future evolution of carbon emissions and the related Kaya

decomposition factor in future periods (t ) are compared to values in the base period

(0):
CO2t

CO20
=

GDPt

GDP0
×

EI t

EI0
×

CI t

CI0

Thus, the change in emissions in period t relative to the reference period (period 0)

relates to the changes in the underlying factors as follows:

ln

(
CO2t

CO20

)

= ln

(
GDPt

GDP0

)

+ ln

(
EI t

EI0

)

+ ln

(
CI t

CI0

)

. (2)
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2.4.2. LMDI decomposition methodology

With the second approach we decompose changes in carbon emissions into Kaya

factors (Equation 1) using the LMDI methodology (Ang & Liu, 2001; Ang, 2005). This

technique determines the contribution of individual factors to changes in emissions

in one scenario over time and across scenarios at a specific year. In the analysis over

time, the changes in emissions are measured with respect to a reference year9, while

the decomposition across scenarios quantifies the changes with respect to a reference

scenario used as the benchmark. Following Ang (2005), the index decomposition of the

change in CO2 emissions between a reference period 0 and a period t is defined as the

sum of the activity growth (∆GDP), energy intensity (∆EI) and carbon intensity (∆CI)

effects, thus,

∆CO2 =∆GDP+∆EI +∆CI (3)

where the contribution of each factor F (GDP, EI or CI) is determined as:

∆F =

CO2t −CO20

lnCO2t − lnCO20
ln

(
Ft

F0

)

.

Similarly, the decomposition of emissions between two scenarios x and y is given

by Equation 3 with

∆F =

CO2y −CO2x

lnCO2y − lnCO2x
ln

(
Fy

Fx

)

. (4)

Equation 4 is used to decompose changes in carbon emissions between scenarios

with different climate policy assumptions. CO2 emissions in the less ambitious sce-

nario10 (scenario x) provide the benchmark point for the evaluation of the more strin-

gent scenario y .

2.4.3. LMDI Decomposition methodology for negative emissions

The LMDI decomposition approach as presented above cannot handle negative

carbon emissions and thus it cannot be used directly to decompose changes in carbon

emissions in the 450 scenario (scenario y) relative to RefPol (scenario x) because, as

shown in Figure 1a, he IAMs project negative carbon emissions by 2100 in the 450 case.

However, Ang & Liu (2007b) present an analytical approach to deal with negative val-

ues in the data set, which we apply to decompose emission changes into Kaya factors.

Since the factor that changes from positive to negative is the carbon intensity of energy,

following their proposal, we define an intermediate point mid (such that CImid = 0 and

GDPmid, EImid > 0) and separate the interval into two parts: first from the initial positive

point in the RefPol scenario (GDPx , EIx , CIx ) to the intermediate point mid (GDPmid,

EImid, CImid); and then from mid to the final negative point in the 450 scenario (GDPy ,

9In the LMDI analysis in this paper we use 2005 as the reference year since it is the latest year to which

all models in the AMPERE project are calibrated (Note that a subset of models is also calibrated to 2010).
10In terms of climate policies
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EI y , CI y ). Hence, the contribution of each factor F (activity growth, energy efficiency,

carbon intensity) to a change in emissions from scenario x to scenario y is given by:

∆F = lim
CI−

mid
→0−

CO2y −CO−

2mid

lnCO2y − lnCO−

2mid

ln

(

Fy

F−

mid

)

+ lim
CI+

mid
→0+

CO+

2mid
−CO2x

lnCO+

2mid
− lnCO2x

ln

(

F+

mid

Fx

)

where CI−
mid

and CI+
mid

are a small negative and positive numbers, respectively. Solv-

ing the limits we obtain the following contribution of the underlying factors to the LMDI

decomposition of CO2 emissions:

∆GDP = 0+0

∆EI = 0+0

∆CI = CO2y −CO2x ,

which means that the carbon intensity of final energy accounts for 100% of the

change in emissions from the RefPol scenario to the 450 case in the periods in which

CO2 emissions become negative.

3. Historical trends, baseline and moderate policy scenarios

3.1. No-policy baseline vs. moderate policy: baseline scenario validation

Integrated assessment models represent the behaviour of the future energy, eco-

nomic and climate systems. Given that the future evolution of key energy/economic

and climate variables cannot be predicted, the validation of IAMs constitutes a com-

plicated task because the results cannot be compared with real data, and the system

behaviour in the past does not necessarily represents the future. For the same reason,

integrated assessment modelling focuses on the analysis of scenarios where different

alternatives of future developments are evaluated (Schwanitz, 2013). In general, IAMs

use a counterfactual baseline scenario as the benchmark to compare the results of al-

ternative climate change mitigation policies and to estimate the cost of abating GHGs

emissions. In this section, we use the index decomposition analysis (see Section 2.4.1)

of historical emissions and near-term modelling results to evaluate baseline scenarios

and to identify assumptions or model characteristics driving significant deviation from

the average results. This analysis follows the proposal in Schwanitz (2013) of using styl-

ized facts as one option to diagnose the behaviour of IAMs. Following the same idea,

one could expect that the decomposition of the near-future carbon emissions in the

baseline scenarios does not diverge significantly from the near past trends. We compare

the index decomposition of carbon emissions in the counterfactual no-policy baseline
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(Base), the moderate policy scenario (RefPol) and the historical data of the period 1990-

201011. Table 3 presents the logarithm of the 2030 factor change (following Equation 2)

in the four analysed economies using 2005 as the reference year . The first factor driv-

ing changes in carbon emissions is economic growth. As shown in Table 3, changes in

GDP account for a significant part of the changes in emissions, especially in India and

China. However, given that the GDP projections in all regions are harmonized in the

baseline and that energy system models have exogenous GDP assumptions, the dis-

persion across models is very limited, with exception of IMAGE (in China and India)

and IMACLIM (in India). The IMAGE model has higher GDP projections in India and

China due to a different approach used to convert GDP MER to PPP12. IMACLIM as-

sumes in India infrastructure policies that aim at controlling the long-term dynamics

of transport-related emissions as well as measures to enable more flexible labour mar-

kets.

Table 3: Logarithm of 2030 factor change using 2005 as reference year; the values correspond to the

average and the standard deviation in parenthesis

Factor
EU USA China India

Base RefPol Base RefPol Base RefPol Base RefPol

C 0.08 -0.28 0.13 -0.12 0.99 0.9 1.24 1.17

(0.22) (0.07) (0.24) (0.1) (0.1) (0.09) (0.28) (0.3)

GDP 0.42 0.42 0.46 0.46 1.91 1.92 1.99 2.01

(0.005) (0.001) (0.01) (0.01) (0.08) (0.08) (0.11) (0.1)

EI -0.33 -0.43 -0.37 -0.43 -0.95 -0.96 -0.88 -0.93

(0.04) (0.09) (0.12) (0.13) (0.15) (0.15) (0.18) (0.16)

CI -0.01 -0.27 0.03 -0.15 0.03 -0.05 0.13 0.09

(0.19) (0.03) (0.14) (0.07) (0.14) (0.15) (0.27) (0.29)

The limited dispersion across models in the changes in economic growth allow us to

focus our analysis on the changes in energy and carbon intensity. Figure 2 presents the

10 year growth rate of energy intensity from 1990 to 2030. Most of the models project in

both scenarios short-term improvements in energy efficiency consistent with the near-

past historical rates for the four analysed regions. However, GEM-E3 (in EU-RefPol,

USA-RefPol, India-Base 2020-2030); IMACLIM (in USA); and MERGE-ETL (in EU-Base,

11The historical data used in this paper are derived from: UN database (United Nations, 2013) for pop-

ulation, World Bank for GDP (World Bank), the IEA statistics for final energy (IEA, 2013) and the CDIAC

database for CO2 emissions (Boden et al., 2013). The EUROSTAT database (European Commission) has

been used to provide historical data for the EU region.
12As highlighted in Kriegler et al. (2015a), in the AMPERE context models assumed a constant PPP to

MER ratio (i.e. PPP growth rates = MER growth rates). However, IMAGE used a dynamic PPP to MER

conversion ratio and thus MER growth in developing regions is significantly higher than PPP growth.
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(a) EU (b) USA

(c) China (d) India

DNE21 GCAM GEM-E3 IMACLIM IMAGE

MERGE-ETL MESSAGE REMIND WITCHPOLES

Figure 2: Energy intensity 10-year growth rate: Historical values and model projections. The values cor-

respond to the annual growth rate in the precedent decade.

USA) result in different13 EI improvement rates. GEM-E3 opts for a larger reduction

in energy intensity of GDP because of the limited substitution within the energy mix

(especially for the EU and USA). Conversely, GEM-E3 projects higher carbon intensity

improvements for India as it assumes reduction of coal input to power plants and thus

energy intensity improvements are lower compared to the model average in the Base

and RefPol scenarios. IMACLIM results are directly link to their GDP projections in the

US, lower than all the models in the Base scenario: A yearly growth rate of 2 and 1.75

%/year in 2020 and 2030, respectively, compared to an average of 2.4 and 2%/year in

the other models. In the case of MERGE-ETL, the higher energy intensity in USA results

from different assumptions concerning the availability and deployment of coal and nu-

clear power plants: In the Base scenario, a larger deployment of coal-based technolo-

13These outliers are defined as those points that are outside the range [min− 1.2(max−min),max+

1.2(max−min)] where max and min correspond to the maximum and minimum 10-year rates from 1995-

2005 to 2000-2010.
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gies results in higher EI; while in RefPol the deployment of nuclear reactors allows the

achievement of the moderate climate targets with a higher energy demand compared

to the other models.

The greatest dispersion across modelling results (as shown in Table 3) is related to

the evolution of carbon intensity of energy. Figure 3 presents the 10-year growth rate of

the carbon intensity from 1990 to 2030. In the EU and USA the short-term projection in

the Base scenario of all models are consistent with the near-past CI improvement rates,

except for MERGE-ETL and DNE21 that assume a future energy production that relies

largely on fossil fuels (especially coal). In the EU-Base the rest of the models include

to some extent the already adopted climate policies, such as the Climate and Energy

Package for 2020 (European Union 2009). The moderate climate targets in the EU and

USA (presented in Table 2) result in a relative decarbonisation of the energy system that

leads to CI improvement rates larger than the observed near-past trends, with excep-

tion of MERGE-ETL and DNE21, whose projections in RefPol represent a continuation

of historical trends. On the other hand, in China and India, the climate target is defined

as a reduction in GHG intensity that is already achieved in the Base case, as shown

in Marcucci & Turton (2015), and the CI improvement is due only to the technology

targets (25% share of renewables in China; and 20 GW and 10 GW installed capacity

of Wind and solar in India). Therefore, both Base and RefPol scenarios result in simi-

lar CI growth rates, especially in India that has the less ambitious technology targets.

In China all models project CI growth improvements larger than the near-past trends,

and WITCH, MERGE-ETL and GCAM have the closest results to the historical trends

because they project a larger use of coal-based power plants and fossil fuels in the non-

energy sector. These results are driven by differences in the models concerning limits

in the deployment of coal technologies, technology costs and technology lock-in14. In

India, all the models project in Base and RefPol an increase in the CI similar to the his-

torical development except the CGE models (GEM-E3 and IMACLIM).

In general, the counterfactual Base scenario represents a continuation of historical

trends in the EU and US, except for those models with optimistic assumptions on the

deployment of coal-based technologies (MERGE-ETL and DNE21), where the RefPol

scenario projects trends closer to the historical developments. In China, the models

project in both scenarios improvements in energy and carbon intensity larger than the

historical development; conversely, in India, the two scenarios represent a benchmark

with near-future trends close to the near-past development.
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(a) EU (b) USA

(c) China (d) India

DNE21 GCAM GEM-E3 IMACLIM IMAGE

MERGE-ETL MESSAGE REMIND WITCHPOLES

Figure 3: Carbon intensity 10-year growth rate: Historical values and model projections. The values

correspond to the annual growth rate in the precedent decade.

3.2. Regional decarbonisation components in the fragmented policy scenario

The second part of the analysis focuses on decomposing long-term regional carbon

emission changes in the RefPol scenario relative to base year levels (2005) using the in-

dex decomposition analysis described in Section 2.4.1. Table 4 presents the logarithm

of the factor change in 2050 and 2100 for the four analysed regions. The decomposition

of emissions differs significantly between developing and developed OECD economies

concerning: (1) the medium and long-term changes in emissions and (2) the relative

importance of the carbon and energy intensity factors. First, while in the EU and USA,

the RefPol results in a decrease in energy-related carbon emissions relative to 2005, in

China and India all models show increasing carbon emissions by 2050, despite the im-

plementation of the (moderate) climate change and technology targets/policies. This

14In this context, technology lock-in refers to energy infrastructure being used until the end of its life-

time without the possibility of early retirement. The following models allow early retirement: DNE21,

GCAM, MESSAGE and POLES.
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Table 4: Logarithm of 2030 factor change using 2005 as reference year; the values correspond to the

average and the standard deviation in parenthesis

Factor
EU USA China India

2050 2100 2050 2100 2050 2100 2050 2100

C -0.62 -1.71 -0.28 -0.84 0.84 -0.35 1.49 0.72

(0.12) (0.46) (0.14) (0.15) (0.07) (0.37) (0.39) (0.35)

GDP 0.72 1.41 0.83 1.59 2.44 2.97 2.99 3.99

(0.01) (0.02) (0.01) (0.02) (0.11) (0.16) (0.15) (0.22)

EI -0.75 -1.41 -0.76 -1.43 -1.44 -2.26 -1.41 -2.22

(0.13) (0.22) (0.19) (0.09) (0.13) (0.24) (0.29) (0.26)

CI -0.59 -1.71 -0.35 -0.99 -0.16 -1.06 -0.09 -1.04

(0.12) (0.52) (0.11) (0.13) (0.13) (0.38) (0.44) (0.39)

difference is mainly due to the large impact of the activity growth effect (∆GDP). De-

veloping countries are assumed to undergo very high economic growth in the Base sce-

nario, with GDP increasing by a factor of 19 and 50 in 2100 from 2005 levels in China and

India, respectively, while the increase in the EU and the US is projected to be around 4-

and 5-fold, respectively15. Second, in China and India the contribution to changes in

carbon emissions from CI improvements is significantly lower than the changes in EI

(see Table 4), hence the changes in emissions are mainly due to the evolution of eco-

nomic growth and energy demand. This is consistent with the findings in Blanford et al.

(2012), where the changes in income and energy intensity are found to be the main de-

terminants for the variation in emissions in China and India in the baseline projections.

The reductions in carbon intensity of final energy become increasingly important in the

second half of the century, leading to a significant deceleration in the CO2 growth in In-

dia and to decreasing emissions in China after 2070 (see Figure 4a). On the other hand,

in USA and the EU, the joint impact of the energy and carbon intensity reductions more

than counterbalances the activity growth effect leading to reductions in carbon emis-

sions relative to 2005. However, there are important differences between the decarbon-

isation strategies in the EU and USA. In the EU, the reduction in energy intensity is the

most important factor until 2050, but all models find that the contribution of changes

in the energy mix (away from carbon intensive fuels) increases rapidly in the medium

term becoming the leading strategy by the end of the century. On the other hand, in

the US, energy efficiency improvements are projected to be the most cost-efficient mit-

igation option during the whole projection period. This is due to the large potential for

demand-side restructuring in the USA, which is characterised by higher energy inten-

15Potential GDP under constant prices is harmonized. CGE and OG models determined endoge-

nously the realized GDP but the results do not diverge significantly from the assumed potential economic

growth.
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sity per unit of GDP compared to other high income OECD economies, like Japan and

the EU.

Despite the important effect of GDP growth on the changes in emissions in the long

run, we focus our model comparison analysis on the changes in energy and carbon

intensity due to the large dispersion across modelling results (see Table 4). Figure 4

presents the changes in carbon emissions, energy intensity of GDP and carbon inten-

sity of energy for the four analysed regions using 2005 as reference year. In the EU and

the US the models project significant reductions in energy-related carbon emissions,

in particular in GEM-E3 and IMAGE that result in lower carbon pathways. In GEM-E3,

these lower emissions are due to a larger reduction in the energy intensity. In IMAGE

the difference results from a larger deployment of biomass with CCS in both the elec-

tricity and the non-electric sector. IMAGE (van Vuuren et al., 2009) and GCAM (Wise

et al., 2009) include a land module with detailed land-use data and competition for

land. In general, these two models project the largest deployment of biomass and, in

the case of IMAGE, a significant use of biomass with CCS that results in a large reduc-

tion in carbon intensity in all the regions. MERGE-ETL is the other model that shows

slightly different results in the decomposition of changes in carbon emissions in the EU

and USA. Relatively lower investment costs from nuclear and coal-based power plants,

due to endogenous technology learning in MERGE-ETL (Marcucci & Turton, 2015), and

the assumptions concerning policy support for such technologies determine to a large

extent the different decomposition results. For instance, in the EU after 2050, MERGE-

ETL assumes an optimistic deployment of coal technologies and a limited production

of electricity from uranium16 that results in a higher production of energy from coal,

which in turn leads to a large carbon intensity that is compensated with a reduction in

energy intensity. While in the USA, MERGE-ETL has the highest EI due to a larger de-

ployment of nuclear compared to the rest of the models (4.7 PWh in 2050 compared to

2.4, 1.7, 1.44 and 1.36 PWh in DNE21, WITCH, POLES and IMACLIM, respectively).

In China, the IAMs have similar decomposition results except for the decrease in

carbon intensity from the CGE models, IMACLIM and GEM-E3, which is significantly

higher than in the rest of the models, mainly due to substitutions in the power mix away

from coal-based power plants. In India, despite the similar changes in emissions by

2100 in all the models, the pathways have a considerable variation. In India, the model

results can be divided in three groups according to the emission reductions: (1) The

CGE model IMACLIM that results in the largest reductions; (2) the energy system par-

tial equilibrium models (DNE21 and POLES) and GEM-E3 with an intermediate path-

way; (3) and the optimal growth models (REMIND, WITCH, MERGE-ETL) together with

IMAGE and GCAM with the largest increase in energy-related carbon emissions. This

difference comes mainly from the changes in carbon intensity. Optimal growth models

16A maximum share in electricity of 50% from nuclear and no limit on coal, while many of the other

models have less optimistic assumptions concerning the deployment of coal in the EU.
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(a) Carbon emissions

(b) Energy intensity of GDP

(c) Carbon intensity of energy

DNE21 GCAM GEM-E3 IMACLIM IMAGE

MERGE-ETL MESSAGE REMIND WITCHPOLES

Figure 4: Logarithm of the factor change in the RefPol scenario (base year=2005)
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have a less detailed representation of the energy system and model technology lock-in

leading to higher increase in carbon intensity until 2050. Energy system models have a

large portfolio of energy technologies and carbon abatement options and are charac-

terised by higher substitution flexibility, especially in the case of DNE and POLES that

allow for early retirement of technologies. The behaviour of the IMACLIM model is

largely due to the low increase in final energy demand in India, driven by assumptions

about low urbanisation rate and limited increases in passenger mobility (especially in

terms of car ownership rates). GEM-E3 results in a different behaviour with low EI im-

provements balanced with high reductions in carbon intensity, assuming a reduction

in coal-based electricity (as already stated in Section 3.1).

Overall, differences across modelling results in the RefPol scenario are largely driven

by assumptions concerning resource availability (biomass, for instance); policy support

and cost of key technologies such as nuclear and coal power, the availability of low and

zero carbon options, the possibility of early retirement of technologies and, to a certain

extent, the model type. CGE models do not have a detailed representation of the energy

sector, therefore, tend to favour reductions in energy intensity over improvements in

carbon intensity. However, especially in China and India, the assumptions employed

in CGE models (e.g. cost of coal power plants) have a particularly large effect on the

decomposition analysis, leading to the opposite behaviour.

4. The additional effort of a coordinated global climate change mitigation action:

The role of negative emissions

The 450 mitigation scenario assumes a global target of stabilizing the atmospheric

concentration of GHGs to approximately 450ppm CO2e by 2100. In this case, the mod-

els decide on the optimal regional and sectoral emissions reduction pathway needed to

achieve this target; thus models are free to choose when and where carbon abatement

takes place. As shown in Figure 1a, most of the models find that the optimal global

CO2 emissions path requires both immediate action (from 2015 onwards) and negative

carbon emissions in the long term (after 2070). In this Section we develop a multi-

model decomposition analysis of the changes in carbon emissions in the 450 scenario

(compared to the RefPol) in order to determine synergies across models in terms of de-

carbonisation strategies and to understand the main characteristics in the modelling

approaches that lead to different mitigation pathways. We use the LMDI methodology

for decomposition across scenarios described in Section 2.4.2 and, in the case of neg-

ative carbon emissions, since this methodology cannot be directly applied, we use the

analytical approach developed in Section 2.4.3.

Figure 5 presents the LMDI decomposition of the changes in regional carbon emis-

sions in the 450 mitigation scenario relative to RefPol. Imposing a 450ppm long-term

global mitigation target has significant impacts on global carbon emissions, which are

projected to decline globally by 67% and 125% in 2050 and 2100, respectively, compared
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(a) EU (b) USA

(c) China

(d) India

Figure 5: LMDI decomposition analysis of CO2 emissions in the 450 scenario compared to RefPol. Models

are sorted from left to right in ascending order of carbon intensity (the model in the left has the lowest

changes in CI). Values below -100% (red line) indicate negative emissions
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to the RefPol case (average of models). All models show a particularly high contribution

of the carbon intensity effect in the 450 mitigation scenario both in developed and in

developing economies.

The activity growth effect cannot be quantified by energy system models, in which

GDP is exogenous and does not change among scenarios. On the other hand, economic

activity is endogenous in general equilibrium and optimal growth models and depends

on the stringency of climate policies and thus it changes in the alternative examined

scenarios. All the IAMs (except IMACLIM and WITCH in China) found that the contri-

bution of changes in GDP to the emissions reduction in the 450 scenario compared to

RefPol is relatively low (red bars in Figure 5). IMACLIM shows large GDP losses in China

and India due to the lack of bottom-up mechanisms for the representation of the en-

ergy system, the relatively limited technological coverage and the substitution rigidities

in the energy mix that lead to higher carbon price levels compared to other models. In

the same way, WITCH is one of the models with the lowest variety of low carbon supply

technologies (as shown in Table 1) and, therefore, the model projects in the long-run

higher GDP losses to achieve ambitious climate policies.

In the first half of the century, the changes in energy intensity of GDP contribute

significantly to the emissions reduction achieved in the 450 scenario compared to Ref-

Pol, but the contribution is projected to decrease significantly in the second half of the

century and to be relatively limited by 2100. Therefore, the additional decarbonisation

strategies needed to achieve the global 450ppm target in the four major economies

(compared to RefPol) shift completely to decreasing the carbon intensity of energy.

This means that additional efforts relative to the moderate reference policy scenario

focus on the deployment of low, zero and negative carbon technologies. However, this

does not mean that reductions in the energy demand are not required to meet strin-

gent emission targets; conversely, they are as relevant as in the reference policy case17.

Furthermore, in most of the models, the optimal CO2 emissions pathway after 2070

in the 450 scenario depends totally on the changes in carbon intensity and relies on

the development of technologies with carbon capture and sequestration (CCS) and, in

particular, biomass technologies with CCS (BECCS) that lead to negative net carbon

emissions18. BECCS technologies are particularly important in the GCAM model, in

which the optimal emission pathway implies less carbon abatement effort in the first

half of the century and larger negative emissions in the long term due to the signif-

icantly higher potential assumed for the biomass with CCS technology compared to

17Note that the decomposition results presented in Figure 5 are relative to the RefPol scenario which

implies some bias since the RefPol already incorporates high energy efficiency improvements (as shown

in Figure 4b).
18Negative emissions from BECCS technologies are theoretically obtained by coupling a module to

capture CO2 to a carbon-neutral biomass power plant (assuming that the CO2 capture by the biomass

feedstock while growing and at steady state balances the amount emitted during energy production)

(Fuss et al., 2014)
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other IAMs. However, CCS technologies are still in the demonstration phase without

commercial projects being developed yet; and their up-scaling faces important barriers

concerning financing, safety, regulatory issues and public acceptance (Lilliestam et al.,

2012; Scott et al., 2013; Capros et al., 2014). Moreover, besides the concerns related to

the capture and storage of carbon, BECCS technologies face additional challenges in-

cluding: (1) Physical and technical constraints to the large deployment of biomass due

to restrictions in land use and trade-offs with food and water supply and conservation

of biodiversity; (2) possible climate risks due to increased N2O and uncertainty in the

behaviour of the carbon cycle in the presence of negative emissions; and (3) uncertainty

in the costs of BECCS technologies (Creutzig et al., 2014; Fuss et al., 2014).

Despite the general agreement among the modelling approaches on the regional

decarbonisation strategies, the assumptions and characteristics of the models lead to

some differences in the decomposition results. One characteristic with a significant im-

pact on the optimal decarbonisation strategies is the variety of low carbon technologies

and the availability of backstop technologies with carbon capture and storage. GEM-

E319 and WITCH are the models with the lowest variety of low carbon technologies

(as shown in are in Table 1) and with fewer biomass with CCS options. As a conse-

quence, these models result in optimal regional decarbonisation strategies with lower

changes in carbon intensity that are partially compensated by accelerated energy effi-

ciency improvements. This is consistent with the model classification in Table 1 (based

on Kriegler et al. (2015a)), in which GEM-E3 and WITCH are classified as low response

models with limited availability of low carbon technological options that opt for re-

ducing energy demand rather than switching to clean energy technologies. Conversely,

IMAGE and GCAM are in the group of models with highest variety of low carbon tech-

nologies (together with MESSAGE, POLES, REMIND and MERGE-ETL) and are the only

IAMs in this group with a detailed representation of land use including competition

for land. This model of the land-use leads to relatively high biomass potentials and,

therefore, changes in the carbon intensity in the long-term are the leading strategy to

achieve the 450ppm targets. In particular, GCAM has optimistic assumptions on yield

growth, technological improvements of crops and CCS potentials (Wise et al., 2009).

Hence, GCAM is the only model that allows for an overshoot in carbon emissions in the

beginning of the century that are then compensated by large negative CO2 emissions

after 2050.

Besides the variety of low-carbon technologies represented in the models and the

assumptions on biomass potentials, the regional distribution of emissions and the as-

sumptions on regional resource availability have an effect on the decomposition re-

sults. The 450ppm target is modelled as a global limit on cumulative GHG emissions,

19The CGE models (like GEM-E3) use aggregate CES (constant elasticity of substitution) functions to

represent the energy system. The rigidity of CES combined with the limited technological representation

implies that CGE models opt for reductions of energy demand rather than changes in the energy mix.
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hence, the models decide when and where the abatement takes place. For instance, the

MERGE-ETL model shows slightly higher emissions in the USA due to lower changes in

the carbon intensity of energy as a result of larger deployment of fossil-based technolo-

gies with CCS, due to more optimistic assumptions concerning availability of coal and

gas resources in the US. These higher emissions are compensated by lower emissions

in other regions, such as Russia and the ROW.

5. Discussion and conclusions

This paper contributes to the literature with a multi-model decomposition analysis

of regional carbon emissions under alternative climate policy regimes with the objec-

tive of: (1) comparing the behaviour of global energy-economy models under baseline

assumptions with historical trends as an alternative approach for validation of baseline

scenarios; (2) identifying robust patterns in the regional factors that contribute to the

mitigation of carbon emissions; and (3) determining the main model characteristics

and assumptions that lead to different decarbonisation pathways.

IAMs use baselines scenarios as a benchmark to compare the consequences of al-

ternative policies. We used the decomposition of near-past carbon emissions and near-

term modelling projections as an alternative to validate the baseline scenarios. We

found that a counterfactual baseline scenario where no climate change mitigation nor

technology policies are pursued (Base) is the one that comes closer to a continuation

of the historical trends (2000-2010) in terms of energy efficiency and carbon intensity

changes in the EU and US, except for the IAMs with optimistic assumptions on the

use of fossil-based technologies. In India, both counterfactual and moderate policy

scenarios represent a benchmark with near-future projections close to the near-past

developments. While, in China, the projections from the models in both cases imply,

already by 2020, improvements in energy and carbon intensity significantly higher than

the historical trends.

Although it is increasingly recognized that global action would be needed to miti-

gate the impacts of climate change, the current climate policy landscape is character-

ized by fragmented regional policies (Copenhagen-Cancun pledges) of moderate am-

bition and without a global effective and binding agreement in place. We developed

a factor decomposition analysis of the changes in carbon emissions in a scenario that

conceptualizes the regionally fragmented climate policies compared to the counterfac-

tual no-policy Base scenario. We found that the reduction in the energy intensity per

unit of GDP is the key factor to achieve the moderate climate change mitigation ob-

jectives. This requires, among others, energy efficiency promotion in all demand sec-

tors and regions via dedicated policies or standards, uptake of more efficient energy

equipment by consumers, investments in better insulation of buildings and changes

in consumer behaviour. However, when the stringency of the climate target increases,

the reduction in energy intensity of GDP is not sufficient to achieve the ambitious de-
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carbonisation targets and low-carbon energy technologies have to be widely deployed.

This is the especially case for the EU, where the importance of the carbon intensity ef-

fect increases over time, becoming the leading driver of decarbonisation in the second

half of the century. Moreover, we found substantial differences between developing

and developed regions, due mainly to the significantly larger effect of economic growth

in India and China, in which a particularly high GDP growth is assumed over the period

2010-2100. The large activity growth effect is only partially compensated by a reduction

in energy intensity and, therefore, carbon emissions in China and India are projected

to increase significantly until 2050 both in the Base and RefPol scenarios.

Furthermore, we developed an LMDI decomposition analysis of the changes in CO2

emissions in a scenario with a global target of stabilizing GHGs concentration at 450ppm

by 2100 compared to the moderate policy case. We found that the major additional ef-

forts required to achieve this stringent long-term target are directed towards the reduc-

tion of carbon intensity of final energy through the deployment of low carbon technolo-

gies, including renewables, nuclear, CCS and electric vehicles. The relative contribution

of energy efficiency improvements (compared to RefPol) is projected to decline after

2050 and to be relatively low in the long-term. Moreover, most of the models project

that realizing the stringent climate target requires negative carbon emissions after 2070

or 2080 in most regions of the world. We showed, using the LMDI methodology, that

when carbon emissions become negative the contribution of the carbon intensity ef-

fect corresponds to 100% of the changes in emissions. Therefore, biomass technologies

equipped with CCS that lead to negative net carbon emissions over their life-cycle are

projected to play a critical role in the achievement of the ambitious climate stabilization

target. However, the deployment of CCS technologies requires both technological and

policy efforts to overcome the barriers on technological development, public accep-

tance, licensing and regulation that could prevent or delay the commercial uptake and

use of CCS technologies. In addition, the large deployment of BECCS might face im-

portant challenges concerning changes in land-use and trade-offs with food and water

supply and the uncertainty regarding climate risks of negative emissions.

The multi-model decomposition analyses developed in this paper show that, de-

spite the comparable trends in the decarbonisation strategies projected by the IAMs,

the specific model assumptions and characteristics lead to important differences across

the results from the evaluated models. These model features include: (1) assumptions

on resource availability, mainly fossil fuels and biomass; (2) assumptions concerning

policy support and cost of key technologies (nuclear and coal power); (3) availabil-

ity of low-carbon technologies; and (4) model type. First, higher assumptions on the

potentials for biomass and BECCS result in significantly larger reductions in carbon

intensity in the long-term to achieve the 450ppm target. Second, optimistic assump-

tions on coal or nuclear technologies result in pathways with higher carbon or energy

intensity, respectively. Third, technologically-rich IAMs with a larger variety of low car-

bon technologies (most of energy system and optimal growth models) opt for higher
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deployment of low and zero carbon options that leads to reductions in the carbon in-

tensity of final energy rather than energy efficiency improvements to achieve stringent

climate change mitigation targets. Conversely, models with relatively limited variety of

low-carbon options, such as WITCH and the multi-sectoral CGE models (IMACLIM and

GEM-E3) result in larger reductions in energy intensity of GDP. Finally, CGE models opt

mainly for energy efficiency improvements rather than reduction in carbon intensity of

energy. However, the results in our analysis, show that model type has a lower impact

than stated in previous studies (Riahi et al., 2007; Förster et al., 2013; van Sluisveld et al.,

2013). In general, the set of assumptions in the CGE models concerning the cost and

availability of technologies can lead to the opposite result.

The continuation of moderate climate policies in line with the Copenhagen-Cancun

pledges by 2050 is supported by all IAMs at relatively low costs for the major carbon

emitting economies. However, the multi-model analysis showed that rapid annual rates

of emission reductions combined with radical energy system restructuring towards low,

zero and negative carbon technologies are required in all regions in order to achieve the

long-term 2◦C stabilization target. Optimal decarbonisation strategies differ among re-

gions depending on the current structure of their energy-economy system, the available

potential for low cost energy efficiency improvements and the level of ambition of their

reference moderate climate policies.

Beyond the scope of the multi-model decomposition analysis presented here, it

is important to recognize the differences across sectors in terms of decarbonization

strategies. However, most of the models included in this inter-comparison do not gen-

erally include a representation of different economic sectors20. Thus, the analysis does

not seek to identify the impact of structural economic changes or different sectoral be-

havior on the evolution of carbon emissions under alternative climate policy assump-

tions. For such analysis alternative decomposition approaches like the one presented

in Fisher-Vanden et al. (2012) need to be developed.
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